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ABSTRACT
Modern High-Performance Computing applications are con-
suming and producing an exponentially increasing amount
of data. This increase has lead to a significant number of
resources being dedicated to data staging in and out of Su-
percomputing Centers. The typical approach to staging is
a direct transfer of application data between the center and
the application submission site. Such a direct data transfer
approach becomes problematic, especially for staging-out, as
(i) the data transfer time increases with the size of data, and
may exceed the time allowed by the center’s purge policies;
and (ii) the submission site may not be online to receive the
data, thus further increasing the chances for output data
to be purged. In this paper, we argue for a systematic data
staging-out approach that utilizes intermediary data-holding
nodes to quickly offload data from the center to the inter-
mediaries, thus avoiding the peril of a purge and addressing
the two issues mentioned above. The intermediary nodes
provide temporary data storage for the staged-out data and
maximize the offload bandwidth by providing multiple data-
flow paths from the center to the submission site. Our ini-
tial investigation shows such a technique to be effective in
addressing the above two issues and providing better QOS
guarantees for data retrieval.
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1. PROBLEM STATEMENT
Supercomputing centers routinely generate huge amounts of
data, resulting from high-throughput compute jobs. These
are often result-datasets or checkpoint snapshots from long-
running simulations that are required to be offloaded to end-
user locations, where they can be visualized for further sci-
entific insights. For example, the Department of Energy’s
(DOE) National Leadership Class Facility (NLCF) at Oak
Ridge National Laboratory (ORNL), which is No. 2 in the
Top500 supercomputers as of this writing, is already gener-
ating terabytes of data from user jobs from a wide-spectrum
of science applications in Fusion, Astrophysics, Climate and
Combustion. As we approach the petascale realm—with
machines such as the NLCF—we might soon be faced with
offloading a petabyte of data from a single application run!
Another example is the TeraGrid where result-data—from
computations in any of the nine sites nation-wide—is re-
quired to be delivered to the end-user. Accessing these na-
tional user facilities, is a geographically distributed user-base
with varied end-user connectivity, resource availability and
application requirements.

It is quoted that modern HPC center user services are often
reminiscent of early computers. Traditionally, centers have
operated under the premise that users come to them with
all of their storage and computing needs. The legacy of this
approach still weighs heavily when it comes to provisioning
a center as significant portions of the operational budget
is spent on large data stores and archives. End-user data
services are marginalized!

With the explosive growth in application data production,
it is impractical to store all user data indefinitely. HPC cen-
ters are aware of this and enforce purge policies to manage
the scratch space by deleting data based on a time window
(ranging from a few hours to a few days) [1]. However, there
is no corresponding end-user service for a timely offload of
data, to avoid purging. This is largely left to the user and
is a manual process, wherein users stage out result-data us-
ing point-to-point transfer tools such as GridFTP [3], ftp,
HSI [5], and scp.

The lack of a sophisticated solution for result-data offloading
affects not only end-user service, but also center operations.
The output data of a supercomputing job is the result of a



multi-hour—even several days’—run. Result output data is
usually stored in the supercomputer center’s scratch space,
which is a valuable commodity. The scratch space is served
through a high-speed parallel file system and is used to store
the input and output data of currently running or soon to
run jobs. A delayed transfer of a job’s output data results in
sub-optimal use of scratch space in that the space is held up
by a job that is currently not running. Further, a delayed
offload also renders output-data vulnerable to center purge
policies. The loss of output-data leads to wasted user time
allocation, which is very precious and obtained through rig-
orous peer-review. Thus, a timely offload can help optimize
both center as well as user resources.

The need for timely data offloading is also fueled by the,
often, distributed nature of computing services and users’
job workflow, which means that data needs to be shipped to
where it is needed. For example, several HPC applications
analyze intermediate results of a running job, through vi-
sualizations, to study the validity of initial parameters and
change them if need be. This process requires the expedi-
tious delivery of the result-data to the end-user visualization
application for online feedback. A slightly offline version of
this scenario is a pipelined execution, where the output from
one computation at supercomputer site A is the input to the
next stage in the pipeline, at supercomputer site B.

The common thread in both these cases is the timely offload
or delivery of output data. In the former usecase, it can
be stated as: Offload by a specified deadline to avoid being
purged ; In the latter, the twist is to: Deliver by a specified
deadline to ensure continuity in the job workflow.

2. SOLUTION SPACE
Offloading large data to end-user sites is often mired by var-
ious factors. First, a direct download from the HPC center
to the end-user requires both end resources to be available
for the entire duration of the transfer. This can be a sig-
nificant space and bandwidth commitment from both the
HPC center and the end-user. For instance, the end-user
resource might be unavailable when the data needs to be
offloaded from the supercomputer scratch space. This ren-
ders the result-data vulnerable to center purge policies or
delays eventual delivery. A desirable alternative, however,
is to quickly move the data from center scratch space—to an
intermediate storage location—so that the high-end, expen-
sive resource can be relieved. Better yet, the intermediate
storage location can be on the data path to the end-user
so the data can be delivered at the destination when the
end-resource becomes available again. IBP [11] and Kanga-
roo [16] explore this space to some extent. However, these
techniques offer merely a staged offloading mechanism and
do not factor in bandwidth variations, orthogonal bandwidth
or delivery constraints.

Second, current data offloading schemes from HPC centers
do not exploit orthogonal bandwidth that might be available
between two end points. Exploiting residual, unused band-
width in the data path between the center and the end-user
can help alleviate several problems endemic to data down-
loading, such as bandwidth volatility. Peer-to-peer (p2p)
data delivery schemes have explored this space with much
success [4]. However, these techniques have not been applied

to large, scientific data and are also not aware of application-
level delivery constraints [6].

What is needed is an architecture for timely end-user data
delivery/offloading that encompasses the data path between
the supercomputing center and the end-user. We propose
a combination of the above schemes, coupled with a mon-
itoring component to react to bandwidth degradation so a
specified delivery constraint can be met.

3. APPROACH
We now discuss how systematic staging of data is achieved to
retrieve result-data from HPC centers. In order to support
high-bandwidth data transfer from the center, our system
utilizes a number of pre-specified intermediary nodes. The
objective is to choose resources that are closer (in terms
of bandwidth) to the center, so that data can be quickly
offloaded to such resources.

We propose to utilize structured p2p networks [14, 15, 13]
to locate and select intermediary nodes (Ni’s) in a decen-
tralized manner. Resources that intend to participate in
the staging system join a p2p network, and through it are
able to reliably communicate with other participants in the
network. Before submitting a job to the HPC Center, the
submission site (Ns) utilizes the overlay to discover appro-
priate Ni’s between itself and the center as follows. Ns sends
out a number of discovery messages on the p2p network with
random destination addresses. By virtue of the p2p routing
property [14], the messages are received at some Ni’s. On
receiving such a discovery message, an Ni replies with its
IP address. In this way, Ns discovers a number of avail-
able Ni’s. Ns then interacts with the center to sort the Ni’s
with increasing latency from the center, while at the same
time with decreasing latency from Ns. This set of nodes is
provided to the center to utilize as the intermediary nodes.

Upon completion of the job, the data-offload is done as fol-
lows. The center splits the result-data into chunks and starts
transferring the chunks to a number of nearby nodes from
the set of Ni’s. The number of nodes used for this purpose,
i.e., the fan-out, is chosen to achieve maximum out-bound
center bandwidth utilization. Note that these Level-1 inter-
mediary nodes may also further transfer data to the Level-2
intermediary nodes (once again chosen from Ni’s), and so on.
This in essence results in data to flow towards Ns, though it
is not pushed to Ns. Decoupling Ns from the data push path
allows the center to offload the data at peak (pre-specified)
out-bound bandwidth without worrying about the availabil-
ity (and connection speed) of Ns, while enabling Ns to pull
(retrieve) data from Ni’s as necessary. Figure 1 illustrates
the overall data-flow path between the center and the sub-
mission site.

Landmark Nodes. Since we rely on p2p-participants to
serve as intermediary nodes, a scenario of insufficient inter-
mediaries is possible. For instance, the submission site may
not have access to any intermediate nodes on the path to the
HPC center. To avoid such a scenario, we propose to utilize a
number of geographically distributed Landmark nodes that
are always available and can serve as intermediary nodes in
case enough p2p-nodes are not available. The Landmark
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Figure 1: The data flow path from the HPC center
to the submission site. The intermediary nodes are
represented by hexagons. The participants also run
an instance of the NWS (gray dot) for bandwidth
monitoring.

nodes can be other HPC centers, or locations which are also
interested in receiving the data. The location and number
of the Landmark nodes is determined through out-of-band
agreements. Depending on the utilization agreements, the
Landmark nodes for different submission sites/applications
may be different. In our implementation, we assume that the
a site is aware of the necessary Landmark nodes a-priori and
does not need to discover them as is the case for p2p-nodes.

Offloading Schedules. The submission site Ns specifies
the Ni’s and the possible data-flow paths from the center to
Ns in the job submission script (e.g., a PBS script). A num-
ber of alternate approaches for data flow are possible. For
instance, the data may be replicated across different Ni’s
during the transfer from one level to the other. This will
allow Ns to pull data from a number of locations, thus pro-
viding fault tolerance against node failure, as well as better
utilization of the available in-bandwidth at Ns. The schedule
can also be used to simultaneously deliver data to multiple
interested sites in the network.

Providing Service Guarantees. The submission site and
the HPC center have Service Level Agreements (SLA’s) re-
garding how quickly data can be offloaded from the center.
The system should provide guarantees to the submission site
to ensure that the SLA’s are not violated. Two example sce-
narios of such SLA’s are offloading data from the center as
quickly as possible, and offloading all data from the center
before a prespecified deadline. The static approach to se-
lecting fan-out is likely to be insufficient for this purpose as
available bandwidth between the HPC center and Level-1
intermediary nodes, as well the bandwidth between various
intermediary nodes may change over the duration of the data
offloading.

To accommodate this dynamic behavior, we propose to mon-
itor the available bandwidth and adjust the fan-out to meet
the SLA. We employ the Network Weather Service (NWS) [17]
to monitor the available bandwidth between participating
nodes. Each participating node joins a “clique”, which is a
group of sensors that measure bandwidth. The clique en-
ables the center to determine the available bandwidth and
select a fan-out based on these measurements. If the avail-
able bandwidth is not sufficient to meet a particular SLA
(either fastest offload or deadline based), the fan-out is ad-
justed. In case the number of available Ni’s are insufficient
for meeting the SLA, the submission site is informed, which
in turn can either provide more intermediary nodes or accept
the best effort from the HPC center.

Note on Fault Tolerance. As stated earlier, pieces of the
result-data can be replicated across many participating in-
termediate nodes, facilitating retrieval from any subset of
the nodes. Yet another approach we adopt is to erasure code
the data to improve the reliability of the transfer, while min-
imizing the amount of data transferred. The computational
cost of erasure coding can be paid by the Level-1 interme-
diary nodes if coding at the HPC center (which will be part
of the job’s time allocation) is an issue.

By way of eagerly offloading result-data from the center, we
avoid data loss due to accidental purging. This also allows
the center to free-up precious scratch space for in-coming
jobs and their data, thereby improving its serviceability. By
staging it on an intermediate network of nodes, en-route to
the destination, we ensure that the offload will not fail due
to end-user resource unavailability. The result-data can be
pulled as and when the end-user resource becomes available.
A point-to-point, manual offload, on the other hand, relies
on end resources being available during the transfer. More-
over, these result-data transfers are usually coded within job
scripts and are simply not tolerant to failure or end-resource
unavailability.

Discussion. A number of systems such as Bullet [8, 7],
Shark [2], and CoBlitz [9] have explored the use of multi-
cast and p2p-techniques for transferring large amounts of
data between multiple Internet nodes. The focus of these
systems is on downloading of user data, or receiving multi-
media streams where meeting strict QOS guarantees is not
a major issue. In contrast, the target HPC environments
of this work impose much more stringent performance re-
quirements, e.g., important application result-data may be
purged if not offloaded before a deadline, which entail in-
novation to support an efficient data transfer model. The
novelty of our approach lies in the use of submission site
specified intermediary nodes that allow the center to dy-
namically adjust data flow paths even in the presence of
failures. By placing the responsibility of selecting the in-
termediary nodes on the submission site, the system allows
the site to spend as much resources as it deem necessary
for a particular result-data. This also frees the center from
spending crucial resources that can otherwise be spent on
processing applications. We believe such an approach will
have a profound impact on the staging-out of data, and will
improve the overall center performance.



Table 1: The time to transfer a 95 MB file under
different schemes.

Transfer Time (s)
Measurement Forecast

Direct Random
based based

Offload 739 245 214 210
Forward N/A 431 393 370
Pull 739 665 663 663

4. EVALUATION
In this section, we present an evaluation of our result-data
offload approach. We have implemented the system as de-
scribed in Section 3 using about 3000 lines of C code. Our
current implementation runs on Linux 2.6 kernel, but is
readily portable to other platforms. In the following, we dis-
cuss the effectiveness of our design in achieving faster HPC
center offloads.

Experimental Setup. We emulated the dynamic behavior
of the proposed data offload model using the distributed
testbed facilities of PlanetLab [10]. For our experiments, we
choose 22 PlanetLab sites such that the HPC center and the
submission site were on opposites coasts of the US, while the
rest of the nodes were geographically scattered in between.
All the nodes were arranged in a tree with the center as root,
as discussed in Section 3, with number of children ranging
from zero to four, and two levels of intermediaries. Such a
tree offers multiple data flow paths from the center to the
submission site and allows for testing the approach under
different scenarios. Finally, the numbers reported in the
following represent averages over a set of three runs.

Approach Feasibility. In the first set of experiments, we
determined the feasibility of our proposed approach in achiev-
ing improved offloading times compared to a simple point-
to-point direct transfer (Direct). For this purpose, we used
a 95 MB ISO file and measured the time of a direct transfer
between the center and the submission site. To allow for a
fair comparison, the direct transfer was done using a simple
TCP connection, instead of advanced transfer tools such as
GridFTP [3] and HSI [5]. Next, we used the intermediary
nodes for offloading. For this experiment, we used a static
data flow path, where each node in the flow tree has four
children. For each chunk of the file, we utilized a random
selection of intermediary nodes (Random) at each Level of
the tree – a technique inspired by the RanSub [7] approach
in Bullet [8].

We measured the times to offload data from the source, time
to forward the data from Level-1 to Level-2, and the time
it would take the submission site to pull the data. Table 1
shows the results. The direct transfer time was observed to
be 739s. Note that under Direct, the time to send the file
(offload) is the same as the time to receive the file (pull).
In contrast, Random reduced the transfer time by 66.9%.
Moreover, the forward time gives some insight into the time
it would take for the entire file to be forwarded from Level-
1 to Level-2, i.e., when it becomes available at the Level-2
intermediary nodes.

Compared to Direct, the time to pull the data on the submis-
sion site is reduced by 10.0%. Note that our implementation
used a simple serial approach to pulling data from Level-2
nodes, and the pull time can be further reduced by more
advanced techniques, e.g., parallel retrievals from Level-2
nodes similarly as in Shark [2]. Also note that the pull time
represents the time to transfer the file from Level-2 nodes to
the submission site, and does not include the transfer time
from the source to Level-2 nodes. However, the submission
site pull is asynchronous, and can start as soon as chunks
begin to arrive at Level-2 nodes, which was observed to be
a fraction ( < 1%) of the forwarding time. We note that
the overall transfer time, i.e., the time from when the source
starts sending the data to when the submission site has re-
ceived all the data is not a suitable metric, as our approach
allows the site to be offline during the offloading process and
delay starting the pull as necessary.

Dynamic Data Scheduling. In this experiment, we uti-
lize bandwidth measurements (determined using NWS) to
dynamically choose appropriate data flow paths. Two tech-
niques are tested: one based on the measured bandwidth
between nodes, while the other based on the bandwidth pre-
dictions provided by NWS. In either case, the bandwidth is
used to greedily provision Level-1 nodes with the aim to
increase the fan-out till maximum (predetermined) center
outbound bandwidth is utilized.

As seen in Table 1, both the bandwidth measurement-based
and prediction-based approaches out-perform Random. Sim-
ple bandwidth measurement takes 214 seconds to offload the
file from the source. This reduces the offload time by 12.7%
and 71.0% compared to Random and Direct, respectively.
Use of bandwidth measurements also results in reduced in-
termediary forwarding time, which compared to Random is
reduced by 8.9%. The time to pull the file to the submis-
sion site remains fairly unchanged at about 663s. This is
expected, as the flow paths do not affect the time it would
take for the submission site to pull the file.

Next, we expected NWS bandwidth predictions to do sig-
nificantly better, however, they only marginally improved
(1.9%) the offload time compared to measurement-based.
The 5.9% improvement in the forwarding time, compared to
measurement-based, shows that prediction-based provision-
ing is promising. We believe that with larger transfers the
predictions will become more accurate and the benefit will
increase. As before, the pull time remains almost the same.

Finally, the results show that bandwidth measurement pro-
vides a good tool for improving the offload times. Band-
width measurement can even be used at the beginning of
the offload, between the HPC center and the end-user des-
tination, to measure if a direct transfer will result in signif-
icantly higher throughput. Also, it can serve as a resource
availability check before the offload. This way, we can decide
if and when to do the distributed offload.

Error Coding Overhead. In this experiment, we measured
the effect of Error Coding in achieving fault tolerance. For
this purpose, we randomly failed several intermediary nodes
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Figure 2: Available data under different error cod-
ing schemes, as intermediary nodes fail.

during the course of the transfer and determined what por-
tions of the file have become unavailable. The experiment
was repeated with increasing number of failed nodes, up to
10 (50%). Figure 2 shows the average results over three runs
for four scenarios: with no error coding, using 4:5 Reed-
Solomon [12] coding (RS), and using replication to create
two copies under both no error coding and RS. As expected,
using neither error coding nor replication causes data to be-
come unavailable even with a single failure, with up to 24.1%
data being unavailable with 10 failed nodes. Use of error
coding or replication allows the file to be transferred suc-
cessfully even when multiple nodes on the path from the
center to the client fail. Note that both RS-single copy and
replication are able to provide 100% availability with up to
two (10%) node failures. This is promising as our RS code
has only 25% redundancy to that of 100% with replication.
However, with additional node failures, simple replication
is able to provide better availability than RS. Creating two
copies of data under RS further improves data availability:
100% availability when 25% of the intermediary nodes have
failed, 96.9% availability with the extreme case of 50% of
failed intermediary nodes. Hence, error coding at the center
along with replication through multiple data-flow paths can
provide excellent fault-tolerance behavior for the offloading
process.

In summary, we have shown that the proposed approach has
the potential to reduce data offload times from HPC centers
and the availability of multiple data flow paths provides pro-
tection against data loss due to failure of intermediaries or
the submission site.

5. CONCLUSION
In this paper, we have presented the design and implemen-
tation of a result-data staging-out service for HPC centers.
Staging-out large data to end-user locations in a timely man-
ner is critical to center operations, its availability and ser-
viceability. Our approach presents a fresh look at offload-
ing by using a set of user-specified intermediary nodes to
construct a p2p network and transferring data based on
bandwidth-adaptation. Our results indicate that this ap-
proach effectively utilizes orthogonal, residual bandwidth
and can serve as an alternative to direct transfers, which may
not always be feasible, optimal, or fault-tolerant. While a
distributed stage-out can be very viable, it also throws open

future research questions in terms of the strategic placement,
and selection, of intermediate nodes between an HPC center
and end-user destinations.
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